Transcriptional response of Saccharomyces cerevisiae to different nitrogen concentrations during alcoholic fermentation.
نویسندگان
چکیده
Gene expression profiles of a wine strain of Saccharomyces cerevisiae PYCC4072 were monitored during alcoholic fermentations with three different nitrogen supplies: (i) control fermentation (with enough nitrogen to complete sugar fermentation), (ii) nitrogen-limiting fermentation, and (iii) the addition of nitrogen to the nitrogen-limiting fermentation (refed fermentation). Approximately 70% of the yeast transcriptome was altered in at least one of the fermentation stages studied, revealing the continuous adjustment of yeast cells to stressful conditions. Nitrogen concentration had a decisive effect on gene expression during fermentation. The largest changes in transcription profiles were observed when the early time points of the N-limiting and control fermentations were compared. Despite the high levels of glucose present in the media, the early responses of yeast cells to low nitrogen were characterized by the induction of genes involved in oxidative glucose metabolism, including a significant number of mitochondrial associated genes resembling the yeast cell response to glucose starvation. As the N-limiting fermentation progressed, a general downregulation of genes associated with catabolism was observed. Surprisingly, genes encoding ribosomal proteins and involved in ribosome biogenesis showed a slight increase during N starvation; besides, genes that comprise the RiBi regulon behaved distinctively under the different experimental conditions. Here, for the first time, the global response of nitrogen-depleted cells to nitrogen addition under enological conditions is described. An important gene expression reprogramming occurred after nitrogen addition; this reprogramming affected genes involved in glycolysis, thiamine metabolism, and energy pathways, which enabled the yeast strain to overcome the previous nitrogen starvation stress and restart alcoholic fermentation.
منابع مشابه
Characteristics of Different Brewerâs Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars
Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...
متن کاملImpact of assimilable nitrogen availability in glucose uptake kinetics in Saccharomyces cerevisiae during alcoholic fermentation
BACKGROUND The expression and activity of the different Saccharomyces cerevisiae hexose uptake systems (Hxt) and the kinetics of glucose uptake are considered essential to industrial alcoholic fermentation performance. However, the dynamics of glucose uptake kinetics during the different stages of fermentation, depending on glucose and nitrogen availability, is very poorly characterized. The ob...
متن کاملSO2 protects the amino nitrogen metabolism of Saccharomyces cerevisiae under thermal stress
Thermal stress conditions during alcoholic fermentation modify yeasts' plasma membrane since they become more hyperfluid, which results in a loss of bilayer integrity. In this study, the influence of elevated temperatures on nitrogen metabolism of a Saccharomyces cerevisiae strain was studied, as well as the effect of different concentrations of SO(2) on nitrogen metabolism under thermal stres...
متن کاملThe Interaction between Saccharomyces cerevisiae and Non-Saccharomyces Yeast during Alcoholic Fermentation Is Species and Strain Specific
The present study analyzes the lack of culturability of different non-Saccharomyces strains due to interaction with Saccharomyces cerevisiae during alcoholic fermentation. Interaction was followed in mixed fermentations with 1:1 inoculation of S. cerevisiae and ten non-Saccharomyces strains. Starmerella bacillaris, and Torulaspora delbrueckii indicated longer coexistence in mixed fermentations ...
متن کاملSaccharomyces cerevisiae signature genes for predicting nitrogen deficiency during alcoholic fermentation.
Genome-wide analysis of the wine yeast strain Saccharomyces cerevisiae PYCC4072 identified 36 genes highly expressed under conditions of low or absent nitrogen in comparison with a nitrogen-replete condition. Reverse transcription-PCR analysis for four of these transcripts with this strain and its validation with another wine yeast strain underlines the usefulness of these signature genes for p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 73 9 شماره
صفحات -
تاریخ انتشار 2007